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Abstract--A dissipative extension of the classical Carnot problem of maximum work extracted from a 
system of two bodies with different temperatures is analysed. In the classical problem the instantaneous 
rates do vanish due to a reversibility requirement imposed on the process, in the extended problem some 
inevitable, rate-related irreversibilities are allowed, in particular those occurring in boundary layers. In our 
analysis, nonlinear thermodynamic modeling is inherently linked with ideas and methods of the optimal 
control. In this paper, we consider a somewhat special but important case in which the thermal capacity 
of the second body is very large and its intensive parameters do not change. This case may also be referred 
to the active energy exchange between the fluid of a limited thermal capacity and ambient or environmental 
fluid. Our variational theory treats an infinite sequence ofinfinitesimal Curzon Ahlbor~Novikov processes 
(CAN processes), as the pertinent theoretical model to develop a finite time theory of a body in a bath, 
when the indirect exchange of the energy occurs through the working fluid of participating engines, 
refrigerators or heat pumps. These applications refer, in particular, to the extension of the classical 
thermodynamic problem of maximum work (exergy) delivered from the system of a finite exchange area 
or of a finite contact time. The dissipative exergy is discussed in terms of the finite process intensity and 
finite duration. An analytical formalism, strongly analogous to those in analytical mechanics and optimal 
control theory, is an effective tool in the thermodynamic optimization. In this paper, a novel approach is 
worked out which is based on the Hamilton-Jacobi+-Bellman equation for the dissipative exergy and related 
work functionals (HJB theory). The HJB formulation is important for finding the work potentials by 
numerical methods which use the related Bellman's recurrence equation. The latter is practically the sole 
method of extremum seeking for functionals with constrained rates and states, and for complex boundary 
conditions. It will certainly be inevitable in the case of the problem generalization to mass transfer and 
chemical reactions. The optimality of a definite irreversible process is pointed out for a finite duration. The 
connection is shown between the process duration, optimal dissipation and the optimal intensity measured 
in terms of a Hamiltonian. An essential decrease of the maximal work received from an engine system and 
increase of minimal work added to a heat pump system is shown in the high-rate regimes and for short 
durations of thermodynamic processes. The results prove that criteria known from the classical availability 
theory should be replaced by stronger limits obtained for finite time processes, which are closer to reality. 
Hysteretic properties are effective, which cause the difference between the work supplied and delivered, for 

the inverted end states of the process. 3:1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Recently, considerable  progress has been achieved in 
unders tand ing  the the rmodynamics  of  finite rate and 
finite t ime systems, including the theory of  C u r z o ~  
A h l b o r n - N o v i k o v  (CAN)  engine [1-4]. In part icular ,  
the theory of  infinite sequence of  infinitesimal C A N  
processes a r ranged  sequentially in order  to accomplish 
the active (work producing)  exchange of  heat  between 
two fluids (in par t icular  fluid and  bath)  was worked 
out  [5, 6]. I t  was shown tha t  the sequence is the basic 
theoretical  tool  to define a rate dependent  and  dur-  
a t ion-dependent  funct ion of  available energy (exergy) 
which generalizes the classical thermal  exergy for finite 
t ime processes with  dissipat ion occurr ing in associated 
resistances. Some works on  the finite-time exergy, 
publ ished to date, suffer an  absence of  exact funct ional  
formulat ions,  which could comprise,  within a single 
expression, the potent ia l  proper ty  of  the classical 
reversible c o m p o n e n t  and  the pa th -dependen t  prop-  

erty of  the irreversible component .  Moreover ,  these 
works do not  make  a dist inction between the finite 
t ime exergy of  processes approach ing  and  leaving 
equilibrium. This proper ty  was first emphasized only 
recently [10, 1 l]. The proper ty  is lost in the reversible 
case of  quasistatic processes, when the effect of  resist- 
ances does vanish,  and  the extended exergy simplifies 
to the classical exergy, inherently associated with 
infinite durat ions.  The classical exergy is known f rom 
many  sources [12 14]. 

We shall dist inguish two classes of  active (work 
exchanging) nonequi l ib r ium systems. W h e n  the sys- 
tem is approach ing  the equi l ibr ium the work is 
released and the system plays the role of  an  engine. 
This case is called the engine mode  of  the system. The 
delivered work W is positive by assumption.  Other-  
wise, when the system is depar t ing  f rom the equi- 
l ibrium the work must  be supplied, and  the system 
plays the role of  a heat  pump.  This is the so-called 
hea t -pump mode  of the system. The  work  W is then 
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A cumulative heat exchange area 
av specific area of heat exchange 

(per unit volume) 
B = E, ~ classical exergy of mass unit 
c specific heat capacity 
E,- generalized (dissipative) exergy of 

mass unit 
F cross-sectional area of the system 
f rate vector of the general process 
f~ rate of work production, profit rate 

( - L )  
G fluid mass flux 
H, tl extremum Hamiltonian function and 

numerical Hamiltonian, respectively 
HTu heat of transfer unit 
I optimal performance function for the 

work integral 
Q~, Q2 cumulative heat fluxes for upper and 

lower reservoir, respectively 
Q -= Ql(7) function describing the driving 

heat flux along the conductance 
coordinate ), 

S~ dissipated entropy per unit mass flux 
of driving fluid 

s specific entropy 
t contact time of the driving fluid with 

the exchange surface 
T = (T, r) vector composed of the 

temperature and the number of 
heat transfer units 

Tl, ~ temperatures of upper and lower 
reservoirs (usually T 2 = T ~, and T l ~ T) 

T e constant temperature of environment 
T,,, ~.  upper and lower temperature of the 

Carnot engine as the part of the 
CAN engine 

u control vector of the generalized 
process 

u = d T / d r  rate of the temperature change of 
the first fluid as the process control 

V wave-front function, defined in the 
text 

v linear velocity of the driving fluid 
( fluid 1) 

NOMENCLATURE 

Yt. cumulative power output 
W =- ~tt~'/G total specific work or total power 

per unit mass flux 
x enlarged vector of state with 

coordinates W, Tand r 
x transfer area coordinate 
z adjoint variable of the work 

minimization problem, 
momentum-type variable c~L/(?~ 

z~ adjoint variable of the entropy 
generation minimization, momentum- 
type variable OL~/c?~. 

Greek symbols 
ct overall heat transfer coefficient 
f~F gauging function 
7~, 7'2 coordinates of partial conductances 
?' coordinate of overall cumulative 

conductance 
)o adjoint variable of work 

maximization problem, 
momentum-type variable ~f0/t?T 

~l = d W / d Q ~  local efficiency 
r dimensionless contact time, number 

of the heat transfer units ( x /HTu)  
logarithmic intensity 

O ~, ®r optimal performance functions for 
the initial and final work coordinates 

¢, entropy production. 

Subscripts 
C Carnot point 
s entropy related quantity 
v per unit volume 
a dissipative quantity 
1,2 first and second fluid, respectively. 

Superscripts 
e environment, equilibrium 
f final state 
i initial state 

external value. 

negative, which means that the positive work ( -  W) 
must be supplied to the system. To obtain a gen- 
eralized exergy, optimization problems are considered 
in this paper, which involve the maximum of the work 
delivered [max W] and the minimum of the work sup- 
plied [min(-- W)]. 

The classical thermal exergy (availability) is the 
nonnegative quantity. It is reversible in the sense that 
the magnitude of the work delivered during the revers- 
ible approaching of the system to equilibrium is equal 

to the magnitude of the work supplied, after the initial 
and final states are interchanged. The first case cor- 
responds to the engine mode of the system, the second 
to the heat-pump mode of the system. The classical 
exergy is the quantity which defines bounds on work 
delivered from (or supplied to) very slow, reversible 
processes. Our research is directed toward the gen- 
eralization of this classical idea for the finite rate tran- 
sitions. We show that while the reversibility property 
is lost for the generalized nonclassical exergy, the ther- 
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mokinetic bounds formed by the dissipative exergy 
are stronger and, hence, more useful than classical 
thermostatic bounds. This substantiates the role of 
the generalized exergy for the evaluation of the energy 
limits in practical systems [15]. 

In this paper, we briefly recapitulate some basic 
issues associated with the derivation of basic work 
functionals, and then direct our analysis towards a 
new aspect, which is the derivation of the Hamilton- 
Jacobi-Bellman theory (HJB theory) for functionals 
of dissipative exergy and work. The HJB theory is 
known as a basic ingredient of variational calculus 
and optimal control [16-20]. The HJB formulation is 
important for the purpose of finding the dissipative 
exergy and/or related work potentials by numerical 
methods. These methods, along with the associated 
Pontryagin's maximum principle [21], are the main 
effective extremum seeking methods for functionals in 
the case of constrained rates and states, and some 
complex boundary conditions [22]. They will certainly 
be inevitable in the case of the problem generalization 
to include the mass transfer (in separation units) and 
chemical reactions. However, the Pontryagin's 
maximum principle algorithm, as itself, does not gen- 
erate the optimal performance function (principal 
function), which is, in our case, the generalized work 
potential or the dissipative exergy, the main result 
which is sought. Otherwise, when the HJB equation 
is known, the exergy (or work) function is explicit 
therein, and a discretization approach can transform 
the problem into the Bellman's functional equation, 
which can be solved by standard solving techniques 
of discrete dynamic programming [23]. 

2. EXTREMUM WORK FOR INFINITE SEQUENCE 
OF INFINITESIMAL CAN PROCESSES 

However, for the purpose of the dissipative exten- 
sion of the exergy no analysis of a single CAN unit 
is sufficient, rather a treatment of a complex system 
composed of infinite number of infinitesimal CAN 
units is necessary. This abstract system, which is 
shown in Fig. 1, is still a work-producing system in 
which the active heat exchange occurs between the 
two real fluids of finite thermal conductivities and 
containing their own boundary layers as dissipative 
elements. The differential Carnot engines are located 
continuously between two separated boundary layers 
of the fluids, so that they work between their inter- 
faces. This quite abstract model of the active energy 
exchange, associated with the power production, is a 
finite-rate generalization of the corresponding classi- 
cal model of the available energy for the reversible 
energy exchange between two fluids. In both cases 
(reversible and not), the amount or flow of the second 
fluid is infinite and, hence, it plays the role of the bath 
or an infinite reservoir [12]. 

Let us consider an infinitesimal CAN process at the 
steady-state [6]. In the steady process the conservation 
balances refer to the fluxes rather than to amounts. 
The first fluid (subscript 1) flows in the direction par- 
allel to the x-axis with a finite mass flux G. Between 
the working fluid of the Carnot engine and each of 
the two fluids (each of a finite thermal conductivity) 
the differential conductances dT~ and d72 are present, 
as the system dissipative elements. 

The conductances link the heat sources with the 
working fluid of the engine at high and low tempera- 

dQ 1 Tt 
F heat input 

T + dT dr iv ing  f l ~ d  ~_~ 
X+ dx -" 

C! 

~1 + d]/1 

I JBTBTBTBTI 
~ | n i l | i l n l  i . . . .  

m,, 
power 

dQ z T z 

Y2=Te 

W A K I  

environment 

~+d~ 

¥+ d~ 
x+ dx 

X 

v 

Fig. 1. Model of power production and dissipative exergy of flowing fluid accomplished in infinite sequence 
of infinitesimal Curzon-Ahlborn-Novikov engines. 
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tures, and they can be expressed as d7~ = el dAl and 
d?2 = 0¢2dA2, where ~j and ~2 are the heat transfer 
coefficients, and dAr and dA2 are the upper and lower 
exchange surface areas (the components of the total 
differential area dA). For the differential length dx 
(the area dA) the fluid delivers the driving heat power 
dQ~ to the working medium of the infinitesimal Car- 
not engine. The temperature of the driving fluid (fluid 
1) decreases slightly along its path, since this fluid 
releases the heat to run the engine. In the range 
T~ > T ~ the differential dT~ is negative for the engine 
and positive for the heat pump. The differential of 
the driving heat flux, dQ,, describes the heat power 
subtracted from the flowing driving fluid when its 
temperature decreases from T~ to T~ + d T~. 

We designate T~, and T2, as the upper and lower 
temperatures of the working agent which circulates in 
each differential Carnot engine. The high-grade heat 
dQ~ reaches the engine part at TI,. In the simplest case 
of the Newtonian heat exchange, which we consider 
here, this heat is proportional to the temperature 
difference T~-  Tv. Otherwise, the low-temperature 
part of the Carnot subsystem releases the pure heat to 
an environment (or fluid 2) through another con- 
ductance, dT.v The flux of the released heat is pro- 
portional to the difference T: , --T> This low-grade 
heat flows between the low-temperature part of the 
engine (at 7"2,) and the environmental fluid, and 
reaches this fluid at the low temperature T: = T e. We 
are dealing with the case when the temperature of 
the bath fluid is constant and equal to that of an 
environment (infinite bath of the second fluid, 
T, = Te ) .  

While the first-law efficiency of such infinitesimal 
unit is still described by the Carnot tbrmula 

T 2 '  
q = 1 TI, (1) 

this efficiency is, nonetheless, lower than the efficiency 
of the unit working between the boundary tem- 
peratures T~ and T2 = ire, as the former applies to the 
intermediate temperatures Tv and T),. The inter- 
mediate temperatures are unknown, but they can be 
expressed in terms of the boundary temperatures T~ 
and T~ and the efficiency, r/. By solving equation (1), 
along with the reversible entropy balance of the Car- 
not differential subsystem, 

dT, (T ,  - T, ,) d?'2 ( T 2 , -  7/'2) 
= -  (2) 

T I , T 2, 

one obtains the primed temperatures as certain func- 
tions of the variables T,, T2 = T ~ and q. The associated 
driving heat flux dQ, = dye(T, - T~.) is then found in 
the form 

dQ, =d7  T, ( l - q )  

from which the efficiency-power characteristic follows 
,IS : 

T~ 
= 1 -  ( 4 )  

TI -- dQi/dT" 

In equations (3) and (4), 7 is an appropriately 
defined overall conductance of the traditional heat 
transfer theory [6]. The conductance d7 may be ex- 
pressed as the product W dA which further leads to 
the expression 

d';, = W d A  = W a , , F d x  = Wa,  Fv dt. (5) 

Here ~' is the overall heat transfer coefficient 
referred to the total differential area dA, av is the total 
specific exchange area per unit volume of the driving 
fluid system and F is the system cross-sectional area, 
perpendicular to x. The symbol v refers to the linear 
velocity of the driving fluid and t is the contact time 
of this fluid with the heat exchange surface. 

Now one can introduce the quantity 

Gc 
- H w u  ( 6 )  

:da,.F 

which has the length dimension and is known from 
the heat transfer theory as the so-called 'height of the 
heat transfer unit' (Hsu). In equation (6) it is referred 
to the driving fluid (fluid 1). 

A nondimensional length x / H v u  = v t / H v u  can next 
be defined which is known as the 'number of transfer 
units'. Since it measures the extent of the system and 
it is proportional to the contact time of the driving 
fluid with the energy exchange area, it also plays the 
role of a nondimensional time, and this is why it is 
designated by r 

v W a v F  Wa, Fv  
-- -- X -- t. (7) 

Hlu Gc Gc 

In what follows, the subscript 1, designating the 
first fluid (driving fluid), will be omitted for simplicity 
of the equations. From the energy balance of the driv- 
ing fluid, the heat power variable, Q~, satisfies 
d Q  = - G c d T ,  where dT is the differential tem- 
perature drop of the first (driving) fluid, and c is its 
specific heat. With the above definitions and the 
differential heat balance of the driving fluid, the con- 
trol term dQ~/d7 ofeq. (4), may be written in the form 

d Q / d y  - - u = - Gc d T/o¢' d A  = - Gc d T /Wa ,  F d x  

= - G c d T / W a ~ F v d t  = - d T / d z  (8) 

(subscript 1 omitted). The negative of the derivative 
dQ/d7 is the control variable u of the process. In short, 
the above equation says that u : T, that is, the control 
variable u equals the rate of the temperature change 
with respect to the nondimensional time z. The control 
u has the temperature dimension. 

With the help of equations (5)-(8), the efficiency 
formula (4) becomes 

T ~ 
t/ = 1 T+ 7 ~" (9) 
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When T > T + the derivative 7 ~ is negative for the 
engine mode. This is because the driving fluid must 
release the energy to the engine to assure the work 
production. Similarly, T is positive for the heat-pump 
mode. In the engine case q ~< r/c, whereas in the heat- 
pump mode r/>~ r/c. When T < T e the efficiencies (as 
the first-law efficiencies do) become negative, non- 
etheless in each case the efficiency of a finite time 
process deviates adversely from the Carnot efficiency. 

For any process mode, the cumulative power deliv- 
ered per unit fluid flow, ~//'/G, is obtained by inte- 
gration of the product of q and dQ/G = - c d T .  
between an arbitrary initial temperature T ~ and an 
arbitrary final temperature T f of the fluid. This inte- 
gration yields the specific work of the flowing fluid in 
the form of the functional 

T c 
WmT' 1 - ' W / G =  -- + C 1-- irdz. (10) 

The notation [T ~, Tq means the passage of the vec- 
tor T - (T, r) from its initial state, T ~, to its final state, 
T r. For the above functional, the work maximization 
problem can be stated for the engine mode of the 
process. 

= max { -  f ] ' c  (1 - ~--ff-T) 7'dr } (11) 

whereas for the heat-pump mode (fluid heating pro- 
cess), one states the minimization problem 

( - -  W ) r n i  n = rain i +~ dT/dr  j z  i L(T, T) dr 

= min 1 Tdr. (12) 
dT/dr  i C - -  

For each process mode, a dissipative exergy of the 
finite time process is obtained as the extremal value of 
the related functional with the appropriate integration 
limits (T ~ = Tand T f = T e for the engine mode of the 
process and T ~ = T e and T f = T for the heat-pump 
mode of the process). 

The above Lagrange functional represents the total 
power per unit mass flux of the fluid which is the 
quantity of the specific work dimension, hence its 
direct relation to the specific exergy of the fluid at 
flow. In the quasistatic limit of vanishing rates, 
dT/dz = 0, the above work functional represents the 
change of the classical exergy 

W(dr..a++0) = - f f f c ( l - ~ - ) d T .  (13) 

This functional leads to the classical exergy in case 
of appropriate boundary temperatures, T' = T and 

T f = T +. Consequently, equation (10) represents the 
dissipative exergy change for the finite time processes 
in which irreducible dissipative phenomena occurring 
in the boundary layers are essential. For the engine 
mode of the process, the dissipative exergy itself is 
obtained as the maximum of the functional (10), with 
the integration limits T i = Tand T r = T e, for the heat- 
pump mode--as the minimum of the negative of this 
functional, with the integration limits 7 ~ = T + and 
T f=  T. 

The alternative form of the specific work (10), can 
be written as the functional 

WW.T'~ -- 11/G 

T f T e r ~ 
= _fr~ c ( l__~)dT__Te~  ~ f,2 c ~ d z  (14) 

in which the first term is the classical reversible term 
and the second term is the product of the equilibrium 
temperature and the entropy production 

['T, ~2 

= Jr, ( is)  

This has been shown elsewhere [61. 

3. SOME PROPERTIES OF EXTREMAL 
SOLUTIONS 

Applying the maximum operation for the basic 
functional (14) at the fixed end temperatures and time 
it is seen that the role of the first (potential) term is 
inessential, and the problem of the maximum released 
work, max W, is equivalent to the associated problem 
of the minimum entropy production. Similarly, per- 
forming the minimum operation for the negative of 
this functional (the role of the first term is inessential 
again) it is seen that the problem of the minimum 
supplied work, m i n ( - W ) ,  is again equivalent with 
the problem of the minimal entropy production. This 
confirms the crucial role of the entropy generation 
minimization in the context of the extremum work 
problems, for each mode of the process. The conse- 
quence of this conclusion is that a problem of the 
extremal work and an associated fixed-end problem 
of the minimum entropy generation have the same 
solutions. Yet, considerations involving the entropy 
production are unnecessary when the work func- 
tionals are given. 

For each process mode, the work extremization 
problems can be broken down to variational calculus 
for the Lagrangian 

L = c 1-- 7 ~. (16) 

The Euler-Lagrange equations for the problems of 
extremal work and the minimum entropy production 
lead to the same second-order differential equation 
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TT- -T  2 = 0 (17) 

which characterizes the optimal trajectories of all con- 
sidered processes. It has been proven [6] that the 
extremal rate, 7 ~, satisfies the Legendre condition for 
the minimum work supply in the case of the heat- 
pump mode and for the maximum work delivery in 
the engine mode, and that each of these two situations 
is associated with the minimum entropy generation. 
For a given duration and the prescribed end tem- 
peratures T ~ and T f, the extremal function T(z), which 
satisfies equation (17), is described by the equation 

T(z, z f, T i, T r) i t i ~..¢' = T ( T / T )  . (18) 

One also obtains a momentum-like quantity, a formal 
analog of the mechanical momentum 

~L ( T~T ~ (19) 
z = o , [ , = c  1 ( T + T ) 2 J  

and the first integral 

0L . T ~ T 2 
E = c ~ T - L  = c(7~+ T) 2 (20) 

which is a formal analog of the mechanical energy. 
An equation for the optimal temperature follows from 
the condition E = h 

h 

c T e 
7 ~ - = ~T (21) 

1 -- +_ cT e 

and the integration of this equation for the fixed- 
end boundary conditions leads to equation (18). The 
coefficient ~ is a process intensity constant, which can 
be determined from the boundary conditions of the 
fixed-end problem 

In T f  / T i 
- (22) 2.f _ ,.gi 

is positive for the fluid heating process and negative 
for the fluid cooling process. In what follows we shall 
assume r ~= 0, then the total duration will be rep- 
resented by the time z ~. 

Equation (21) shows that, for the same h, the heat- 
pump heating processes run faster than the engine 
cooling processes (larger ~ and shorter durations in 
the engine case than in the heat-pump case). On 
the other hand, as shown by the function 
E(~) = cTe~2(l +~) 2 obtained from equation (20), 
for the two values of ~ of the same magnitude, but of 
opposite signs and for the same durations, the values 
E = h are larger for the engine mode than for the heat- 
pump mode of the process. 

4. DYNAMIC PROGRAMMING: CHARACTERISTIC 
FUNCTIONS 

Our problem of generalized exergy falls into the 
category of certain finite-time potentials, an evergreen 
problem of contemporary thermodynamics [24]. The 
power of the dynamic programming method (DP) as 
applied to problems of this sort lies in its important 
property : regardless of local constraints on controls 
or state variables the optimal performance functions 
satisfy an equation of Hamilton-Jacobi-Bellman 
(HJB equation) with the same state variables as those 
for the unconstrained problem. Only numerical values 
of optimizing control sets and those of the optimal 
performance functions differ in constrained and 
unconstrained cases. Although in the case of pure heat 
transfer problem most components of the solution can 
be obtained analytically, even then formulations exist 
in which the analytical solutions are not possible. Such 
are those with free boundary conditions, non-New- 
tonian heat transfer and constraints imposed on rate 
change of state and state itself (rate change of the 
temperature and Titselfin our one-dimensional case). 
Otherwise, the state function property of dynamic 
programming potentials should prove to be priceless 
for more complex problems, such as those with mass 
transfer and chemical reactions. Therefore, the test of 
the HJB method in the context of the heat transfer 
problem and associated exergy is highly desirable. 
This test should initiate a systematic search towards 
the properties and implications of HJB equations in 
thermodynamics. In particular, the test performed in 
this work shows that our problems may be correctly 
described by two sorts of the HJB equations, a back- 
ward HJB equation and a forward HJB equation. The 
former is associated with the optimal work or exergy 
as an optimal integral function (/) defined on the 
initial states (temperatures), and accordingly refers to 
the engine mode or processes approaching the equi- 
librium. On the other hand, the forward HJB deals 
with the exergy (work) as the function ( - / )  defined 
on the final states, and accordingly refers to the heat- 
pump mode or processes leaving the equilibrium (see 
Section 10). 

Amongst the work extremization problems 
considered, the problem of the maximal work delivery 
(constrained or not) is governed by the characteristic 
function 

I(7 "f, T f, "c i, T i) ~ m a x  W1TiTr 1 

In equation (23) u = ir is the rate control variable 
defined by equation (8). This equation refers to the 
engine mode or to processes approaching equilibrium. 
For heat-pump mode and processes departing from 
equilibrium one can define the optimal function as 
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- - / ( r  f, T f, r i, T i) -- m i n ( -  WITi Tfl) 

t. 
Indeed, since for arbitrary quantity W for the same 

change of the end states and times, the components 
of the vector T = (T, r), the following holds 

maxWiv, v, I = - m i n ( -  WW,Tq) (25) 

the common extremal function l ( r  f, T f, r i T ~) describes 
the two modes, yet each mode refers to a different 
region in the space T. Clearly, the quantity I describes 
the extremal value of the work integral W[T',T~], 
equation (10). It characterizes the extremal value of 
the work released for the prescribed temperatures T ~ 
and T f when the total process duration is r t -  z ~. (The 
invariance of the integral value with respect to the 
variation of one of the end times when the total dur- 
ation is fixed is consistent with existence of the energy- 
like integral for the problem.) 

Here, this problem is transformed into the equi- 
valent problem in which one seeks a maximum of the 
final work coordinate x~ = W f for the system 
described by the following set of the differential equa- 
tions 

dr - c 1 -  u = j 0 ( T , u )  (26) 

d T  
- -  = u = J I ( T , u )  (27) 
dr 

dx, 
= 1 = f 2 ( T , u ) .  (28) 

dv 

The state of the above system is described by the 
enlarged state vector x, which is composed of the three 
state coordinates, x0 = W, xl = T a n d  x2 = r. The last 
equation of the set states that the state coordinate 
x2 = r has been chosen as the independent variable of 
the system. The sole control variable u in the system 
is simply the rate of the temperature change in time r. 
Supposedly, more involved models of this problem 
might exist, with a vector of control variables, u, hence 
the symbol u rather than u is used in our general 
formulas below. 

While the knowledge of the characteristic function 
I is only sufficient for a complete description of the 
extremal properties of the problem, other functions of 
this sort are nonetheless very suitable for the problem 
characterization. One of these functions, ®', works in 
the space of one dimension larger than I and involves 
the work coordinate x0 = W 

max W f -= Oi( W i, r i, T i, r f, T f) = ~ + I(r i, T i, r c, Tr). 
u 

(29) 

This structure is the consequence of the fact that the 
state variable W is not explicitly present in the rates 

of the state equations (26)-(28). In this paper, we do 
not  consider more general cases. 

In the still enlarged space of variables 
(W',ti ,  T ~, wf ,  F , T  f) we also introduce the (non- 
extremal) wave-front function V defined as 

V =  W f - O  i(W i,z i ,T  i ,r  f ,T  f) 

= W f -  W ' - I ( r  ~, T ~, r f, Tf). (30) 

Its two mutually-equal maxima, at the constants W ~ 
and W f, are described by the extremal functions 
V~(W ', t i, T ~, t f, T f) = vr( t  ~, T ~, W f, t f, T f) - O, which 

vanish identically along all optimal paths. They are 
associated, respectively, with the maximum of the free 
final coordinate W f in the subspace of variables 
(W ~, t i, T i, t f, T f) and the minimum of free initial coor- 
dinate W ~ in the subspace (t ~, ~ ,  W f, F, Tf). 

Regardless of the state variables being constrained 
or not, the partial derivatives of the extremal perfor- 
mance function O j with respect to its 'working state" 
[the initial enlarged state (W~,T ~, T')] and those of 
the wave-front function V = W f -  O~(W ~, r ~, T ' . . .  ) do 
coincide modulo to sign. One can, therefore, use the 
negative partial derivatives ( -  ~ V/OT ~, - ~, V/'~r ~ and 

- ~ V/O W ~) instead of (c~®'/0 T ~, 8,®'/~r ~ and OO'/g W ~) 
in any equation of the backward DP algorithm (the 
standard algorithm in which the initial set of the coor- 
dinates W ~, T ~, r ~ forms the state variables). 

On the other hand, one can also formulate a dual 
problem of a minimal initial work coordinate W ~, 
when the final work coordinate W f is fixed. This mini- 
mum is described by the extremal performance func- 
tion 

min W i = Of(W f, t f, T f, t j, T ~) = W f - - l ( t  t, T f, t ~, T ~) 
u 

(31) 

which is related to the wave-front function V as fol- 
lows 

V = o f ( w  f , t  f, T l , t  i, T i ) -  W ~ 

= W f - W  i - l ( r  i , T ' , r  f , T  f) (32) 

[compare equation (30) for V in terms of Oq. Of 
course, the following equalities hold along an extremal 
path 

max W f -  W ' -  l ( r  t, Tf, r i, T i) 

= W f -  rnin W i -  l ( z  f, T f, r i, T') = 0. (33) 

They can be written in terms of the wave-front func- 
tion V as follows 

max V = max{ W f -  W ' -  1(~ ~, T f, r i, T')} = 0. (34) 

The partial derivatives of the extremal performance 
function O f with respect to its 'coordinates of working 
state' [the final coordinates (W s, Tf, z s) which are 
varied in the forward DP equation] and those of 
V = O f -  W ~ do coincide. One may, therefore, use the 
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partial derivatives ( # V / O T f , # v / # t  f and 8 V / 8 W  f) 
instead of (c~®7#T r, O®f/&Jand c3® f/# W f) in any equa- 
tion of the forward DP algorithm (the algorithm 
where the final coordinates W r, T f, t r are the state 
variables). These properties are exploited below. 

We search for a dynamic programming equation by 
applying the Bellman's optimality principle [16, 17] 
for a control u, in an admissible set U, which makes 
the final work coordinate x0(z r) -= W f a maximum or 
the initial work coordinate, x0(z ~) = W i, a minimum. 
We use the enlarged state vector x as the vector includ- 
ing the work coordinate x0 = W and the coordinates 
T and ~, and the optimality principle in a relatively 
seldom form which links the original and dual opti- 
mization problem. This form states that the optimal 
final value of an optimized quantity is a function of 
the initial state, whereas the optimal initial value of 
the optimized quantity is a function of the final state. 
Accordingly, the 'original '  problem of the maximal 
final work coordinate is described by the function 
®i(xi) ~- I~ i (w  i, T i, T1), equation (29), the 'dual '  prob- 
lem of minimal initial work coordinate by the func- 
tion Of(x f) = ®f(W ~, z ~, 7"), equation (31). In the first 
function, the complete set of the initial coordinates is 
necessary, in the second the complete set of  the final 
coordinates must be used. Taking this into account, 
we will occasionally omit, for the brevity of formulas, 
the remaining variables in these functions which can 
be regarded as parameters. We apply the original and 
dual form of the optimality principle, respectively, for 
the initial and final part of a path, to show that the 
conclusions obtained from DP equations can be read 
in terms of the single, common wave-front function 
V(xi, x ~) which treats the initial and final states in 
the enlarged space x on an equal footing. While the 
accepted independent variable can be to a large extent 
arbitrary (its monotonicity property in time is the 
suitable limitation), we will assume the time coor- 
dinate ~ as the independent variable. We also assume 
that the rate dW/dr  = dxo/dz is known in the form 
f~(x, u) = - L(x, u), where L is the integrand in equa- 
tion (12) with 7 ~ = u. By passing to the usual residence 
time t (in seconds) and taking into account the explicit 
presence of transfer coefficients in f0, one could admit 
the possibility of 'aging'  of the system, however, this 
extension is omitted in this paper. While we derive 
below the DP equations for ®i(x') or ®r(xf) only, 
the related equation for the integral work function 
I ( T  ~, t ~, T r, t f) in the narrowed space of the coordinates 
(T, z) follows immediately from the condition V = O. 

5. DYNAMIC PROGRAMMING: HJB EQUATIONS 

The problem can be treated mathematically as 
follows. Let us write our system of the three state 
equations [equations (26) (28)] with the state vari- 
ables x0 = W, xi = T and x2 = ~ in a general form 

d--Tx, = f~ (x ,u )  13 = 0, l ,  2 (35)  
dz 

(.[2 =- 1). Let us assume differentiability of the optimal 
performance function ®i(xi) and consider the control 
u in intervals (z i, z ' + A t )  and (z i+Ar ,  rf), where AT is 
a small quantity. In order to take the variations of the 
initial state in ®~(x ~) into account, we assume that the 
' long',  final segment of trajectory, for z in the interval 
(r~+ Az, rf), is optimal, The performance index of this 
segment equals ®~(x~+Ax). Therefore, the optimal 
final work for the whole path in the interval (T ~, if)  is 
the maximum of the criterion 

Wf_= ® ' (x '+Ax)  = ®I(W~+AW, T ~ + A T ,  z ' + A z ) .  

(36) 

The maximization is with respect to the control 
vector u i at the constant x i, for the small initial (non- 
optimal) part of the path. It is performed at the con- 
stant x ~ subject to all constraints, i.e. including the 
differential transformations of state, equations (27) 
and (28). Restricting to linear terms of expansion of 
®~, equation (36), in the Taylor series one finds 

0® ~ 
Wf = ®'(x~) + #x~ Axt~ +0(e-)  

= W , T , z ) +  A W  
W ~ 

c~®i A T  c3®' + ~ + . Az+0(e,2). (37) 

In equation (37) the symbol 0(e z) means the second- 
order and higher terms. They possess the property 
lira [0(e2)/Ar] ~ 0 when Ar ~ 0. 

Similarly, one may consider the variation of the 
final coordinates of the state vector x = x f. One then 
assumes that a ' long'  initial segment of a trajectory 
is optimal. The performance index of this optimal 
segment equals ®f(x~-Ax).  In this case the control 
u = u r should be properly adjusted along a 'short '  
nonoptimal  final part of the path. The optimal initial 
work coordinate W ~, for the whole path in the interval 
(z i, zf>, is the min imum of the criterion 

W i = ®f (x f - -Ax)  = ® f ( w f - A w ,  Tr-AT, Tf--Az).  

(38) 

Now the minimization is with respect to the control 
u f, at the constant  x r and subject to all constraints, i.e. 
including the differential transformations, equations 
(26)-(28). Restricting to linear terms of expansion of 
O f, equation (38), in the Taylor series one obtains 

~®f 2 w~ = Of(x*) - ~x)~ ax~ + 0(e ) 

3 0  r 
= ®"( Wf' Tr' zf) - 0 W r A W 

6q®f" ~ f  2 
~TTAT-- ~Tff Az+0(E ). (39) 
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In equations (37) and (39) the state changes are con- 
nected with controls u by the state equations (35), 
hence for small Ar 

Ax, = fa(x, u) Ar+0(~2). (40) 

After substituting equation (40) into equations (37) 
and (39), and performing the appropriate extrem- 
izations in accordance with the Bellman's principle of 
optimality, one obtains for the variations of the initial 
point 

{O1 (Xi) ~- OOi } m~x w"= ~x  yx~D~(x, u) A¢+O(~) 

(41) 

and for the variations of the final point 

min W i = min ®f(x f) - ~ f ~ ( x ,  u)Ar + 0(~ 2) . u f u f 

(42) 

Equations (41) and (42) can then be simplified on 
the basis of definition of the optimal performance 
functions ®i and O r, equations (29) and (31), and 
using the property that these functions are inde- 
pendent of the control u. After the reduction of ®' 
and O r and the division of both sides of equations (41) 
and (42) by Az, the passage to the limit Ar --, 0 subject 
to the condition lim [0(e2)/A~] ~ 0 yields, respectively, 
the backward and forward Hamil tonqacobi-Bel lman 
equations (HJB equations) of the optimal control 
problem. 

For the initial point of the extremal path one finds 
as the backward DP equation 

max., ~x~x)/l,(x,u)I = m;ax, (~W' W ' ( T , n ' )  

• ' +  0'1 = m a x ( d ° ' )  +~-T' (T,u)  ~'PJ ' \d'PJ 

(D = - m ! n  = m a x  = 0 .  (43) 

On the other hand, for the final point of the extremal 
path one finds the forward DP equation 

{ ~?®r } ft3®c ._ r r 
min., - 0~x~f~(x,u ) ~  = -max¢ ~ W~(T ,u )  

-~- ~ 'T ' f (T f , Uf) -~- ~r f j uf \ drf J 

=min ( -~=-max(dV '~=O.  (44) 
U r U f ~d~'f J 

The properties of V = W f-®~ = O f -  W ~ have been 
used in the second lines of the above equations. The 
rates dxddz should necessarily be considered in terms 
of the state variables and control(s). One concludes 

that the optimal motion of the wave always maximizes 
the speed of the advancing wave front d V / d r  f or the 
speed of the retreating wave front dV/d(-z~). 

The partial derivative of V with respect to the inde- 
pendent variable r can remain outside of the bracket 
of this equation as well. Taking this into account 
as well as using in equations (43) and (44) the relations 
?,V/~W'  = - ~ O i / O W  ' = - 1, OV/OW f = O O f / ~ W  f = 1 

and i f /=  f0 = - L, one finds 

+ m i n ~ u ' + L ' ( T '  u i) = 0  (maxW f) 
f 0r' , (~T 

(45) 

~ +max u f - L f ( T  f, u f) = 0 (min W'). 
{~T I u f 

(46) 

In terms of the integral function of optimal work, 
I =  W f -  W ' - V ,  these equations become, respec- 
tively, 

m +max u i+fi0(T' ,u i = 0 (47) 

~-f+min{~Tfuf-ff°(Tf'uf)}=O'o~ u ~ (48) 

In all equations of this sort the extremized 
expression are some Hamiltonians. In fact, they are 
Pontryagin's type, nonextremal Hamiltonians. The 
optimal control u, which solves the optimal work 
problem, is chosen in order to extremize a Ham- 
iltonian at each point of the extremal path, which 
means extremizing the wave-front velocity d V /dr  in 
the considered HJB equation. 

6. PASSAGE TO HAMILTON-JACOBI EQUATION 

For the process Lagrangians (functions L or -f0)  
the extremum condition of the Pontryagin's Ham- 
iltonian links the derivatives of L or -J0 with respect 
to the process rate u = 7' with the adjoint variable 
z = ~ V / ~ T  = OI/t3T. For concreteness, we will work 
with equation (48) in which the index f is omitted. 
The minimization of this equation with respect to the 
rate u leads to the two equations of which the first 
describes the optimal control u expressed through the 
variables T and 2 = ~I/~T.  

01 OJo (T, u) 
c~T Ou (49) 

and the second is the original equation (48) without 
the extremization sign 

c31 01 
+ ~ ] ~ u - f ~ ( T ,  u) = 0. (50) 

With the momentum-type variable 2 ~-?I /?T and 
equation (49) written in the form 
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~ _ aJo(T,u) 
Ou (51) 

one can solve the above equation in terms of u to 
obtain the function u(2, T). Next one substitutes this 
function into the last two terms on the left-hand side 
of equation (50). [This is just the minimal form of 
equation (48).] One obtains the energy-type Ham- 
iltonian of the extremal process 

H(T,r ,  2) = 2u(2, T ) - f , ( 2 ,  r ) .  (52) 

With this Hamiltonian and using 2-= OI/OT one 
obtains from equation (50) the Hamilton-Jacobi 
equation for the integral I 

~3~ + H T, = 0. (53) 

(In our example both functionsJ0 and H do not con- 
tain time explicitly.) This equation differs from the 
HJB equations as it refers to an extremal path only 
and H is the extremal Hamiltonian. In Section 8 we 
apply the above formulae to our concrete Lagrangian 
(16). 

A brief heuristic approach to derivation of equation 
(53) along the lines of reasoning first introduced to 
variational calculus by Caratheodory is insightful [25 
27]. As follows from the definition of the maximum 
performance function I for the work functional (23) 

max f' } {u(o} {.~, f~(T, u) d r - l ( T  ~, r i, T f, r f) = 0.  (54) 

The differentiation of this equation with respect to 
r r proves that the total time derivative of I satisfies the 
equation 

{ .f f f dl(Ti,'ci, Tf,'rf) } = O (55) 
max [ o ( T , u )  dr:" 

which describes the vanishing maximum of the power 
f~ gauged by the total derivative of the optimal per- 
formance function. Expanding in this equation the 
total time derivative and changing signs (associated 
with change of the extremum operation) yields 

min + u f - f f o ( T  f, u f) = 0 (56) 
u f 

which is equivalent with equation (48) and leads to 
the Hamilton-Jacobi equation (53). 

7. HAMILTON-JACOBI EQUATIONS FOR 
EXTREMAL WORK AND EXERGY 

Let us apply the above procedure to the basic inte- 
gral (10) written in the form 

whose extremal value is the function l(T~,r ~, T f, rf). 

The integrand of this integral is the functionJ0(T, u). 
The momentum-like variable (equal to the tem- 
perature adjoint) is then 

~u c 1 (T+u)2 f (58) 

Hence the rate control u in terms of T and its adjoint 
.t = OL/OT. 

X/ TeT 
u = 1 + 2/c---- - r. (59) 

The energy-like function E(T, u) of the engine mode 
problem is the rate representation of the extremal 
Hamiltonian 

Of;  u 2 
E(T, u) = 8u u -go  = - -  c T  e ( T - . k  bt) ~ - "  (60) 

The extremal Hamiltonian itself is E expressed in 
terms of the adjoint 2 

H(T, 2) = c 1+2/c 2/c+1 - -  . 

V l+;~/c/ 

(61) 

After rearrangements and simplifications 

H(T,  2) = 2cx/TeT(1 +2/c) - -cT(I  +2/c) - - c T  e 

: - c ( . , ~ T ~ - x / T ( 1  +2/c) )  2. (62) 

The Hamiltonian in terms of the derivative c31/•T is 
then 

H(T,  al/ST) = -c( ,v / -T~-x/T(1 +c ' I /T))  z. 

(63) 

While one could obtain a positively-defined H by 
changing signs at the adjoint variables, we retain the 
Hamiltonian (63) negative, as the formal property 
reflecting the dissipation of the mechanical energy. 

The Hamilton-Jacobi partial differential equation 
for the maximum work problem (the engine mode of 
the system) is 

~ I / ~ 3 z - c ( x / ~ -  ~ T ( l  + c  ' I /T))  2 = 0. (64) 

Note, however, that equation (64) is valid not only 
for the engine mode, but also for the heat-pump mode, 
the conclusion which is true even if different defi- 
nitions are applied in the heat-pump case. Indeed, for 
the heat-pump mode one has to minimize the time 
integral over the Lagrangian L = --f0(T, u), and the 
procedure leads to the extremal function 
- I( T ~, r j, T ~, r~). The adjoint variables and the Ham- 
iltonian change their signs (2 = - z, Hi. = -//~-, where 
z = -81 /8T .  Consistently, the new Hamilton-Jacobi 
equation takes the same form as the equation given 
above. In our earlier work [10], the definitions of 
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Lagrangians and characteristic functions were differ- 
ent to those of this paper, associated with different 
signs in Hamiltonians and characteristic functions. 
We believe that the definitions used here have the 
virtue of greater coherency than those previous ones, 
restricted to particular cases. 

8. HAMILTON-JACOBI EQUATION FOR MINIMAL 
ENTROPY PRODUCTION 

As shown in a previous paper [I 1], the variational 
fixed-end problem of the maximum work W is equi- 
valent to the variational fixed-end problem of the 
minimum entropy production. Let us, however, com- 
pare the Hamilton-Jacobi equations of these two 
problems. The specific entropy production is 
described by the functional [11] 

S~ = L~dz -= c ~ d z .  (65) 

Assume that the minimum of this functional is 
described by the optimal function I~(T, z~, T r, rf). We 
shall find the Hamilton Jacobi equation for this func- 
tion. For an extremal path, the partial derivative 
~L/(? T satisfies the maximum Hamiltonian condition 

~1~ 0L~ 
z~ -= ~?T ~u (66) 

In our case 

whence 

c?L, c I T 2 ] 
~u - T 1 (67) 

T = x/~- - Tz ,~ .  (68) 
u + T  

From this equation one finds the rate control 
u = dT/dz  in terms of the temperature T and its 
adjoint z, = ,31,/0T 

u T 1 1). 
= Q/1--Tzo/c (69) 

The energy-like integral of the entropy functional is 

E,~ = u--L,,  = c (T+u)2 .  (70) 

Moreover, we find from equations (60) and (70) for 
the definitions used in this paper 

E =  -T~E~.  (71) 

This means that in the energy representation of 
thermodynamics (primed quantities), the equality 
E = - E ~  holds, where E'~ -- TeE~. The equality (71) 
is true for each mode of the system. For the modified 
definitions, described at the end of Section 8, which 
are particularly convenient for the heat-pump mode, 
E = E ' , .  

The entropy production Hamiltonian H~ is the rep- 
resentation of E, in terms of T and z~ 

U 2 

H o ~-  c (T+u)  2 

c T - -  

whence 

H. = c(1 -- x/i--- Tz,~/c) 2. (73) 

Clearly, from equations (66), (67) and (70), the case 
of vanishing z~ implies H~ = 0 identically, which refers 
to the reversible quasistatic process. The Hamil ton-  
Jacobi partial differential equation for the minimum 
entropy generation problem (both modes of the sys- 
tem) is 

~ l , / O z + c ( l - , ] l - c  --~ T~I~/~T) 2 = 0. (74) 

This can be compared to equation (64), which 
describes the extremal work problems based on the 
work Hamiltonian H, equation (63). In spite of the 
equality, E = E~, the partial derivatives of both 
extremal functions with respect to T, (?I/~,T and 
?~I'~/OT, differ. Since, however, the two functionals 
(that of the work and that of the entropy generation) 
yield the same extremal, the connection between them 
can be determined. The procedure is based on the 
canonical transformation theory which leads to the 
conclusion that the lost power L', = T e L ,  can be 
gauged by addition of the total time derivative df~/dz 
of a gauging function f~(T). Taking into account the 
change in the type of the extremum operation, in order 
to preserve unchanged equation of the extremal curve, 
the following general equation must link the momen- 
tum-type variables 

~u - 0T ~u " (75) 

For the engine mode of our example this reads 

- c  1 (~+T)2  dT T 1 ( ip+T)  2 . 

(76) 

This relationship links the Lagrangians of the 
entropy and work. The equality E~ = E proves that 
we deal with a time independent gauging function, 
hence the ordinary derivative d~/d Tin equation (76). 
The above equation yields 

d r  - - c  1 -  (77) 

whence after integration between 7 ~ and T f 

f ~ ( T ) = c ( T i - T f ) - c T ~ l n  ~ = - A B ( T )  (78) 
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which is the change of the classical thermal exergy. 
Therefore, the change of the classical exergy is just 
the Hamiltonian-preserving gauging function for the 
dissipated availability functional based on the inte- 
grand L'~ -= T~L,,. The equalities (71) and (76) may 
be viewed as equations linking the two functionals, 
the entropy functional and the generalized exergy 
functional, along an extremal. Subtraction of the 
classical exergy change from the dissipated availability 
functional is that form of gauging which preserves the 
same extremal trajectories and dissipative Ham- 
iltonians of the two fixed-end problems considered. 

9. PRINCIPAL FUNCTIONS FOR WORK AND 
EXERGY PROBLEMS 

Let us now discuss the solutions of the Hami l ton-  
Jacobi equations for the considered problems. From 
equation (23), by integration along an extremal path, 
one finds the function which describes the optimal 
specific work 

T ~ T ~ 
I ( T  i, Z f, / 7i, "c f)  = c ( T  i -  W r) - i ~ - ~  cln Tf.  (79) 

This is the expression which generalizes changes of 
the exergy to processes with a finite rate dT/d'c = ~T. 
In a finite rate process this work depends explicitly on 
the process duration. 

From the above equation and after using the end 
conditions to evaluate the intensity ~ in terms of the 
boundary temperatures and times 

In (TC/T ~) I n ( T T T  f) 
- (each mode) (22') 

T f __ T i T f __ T i 

the extremal specific work between two arbitrary 
states follows for every process mode in the form 

I ( T  i ' T I, z i ' r c) 

Ti ( Te ~ T i 
= c ( T  i -  T f ) - c T  ~ l n ~  + c _ r  ~ -  l ~ ) l n T r  

= c T i - T f ) - c T ~ l n T ' f + c T e ~ l ~ ) m ~ f  

T' In( TJ / Tf) 2 
= c(T i -  T f) - c ( T  e In ~. - - c T  ° 

T' z f - -  z i - l n ( T i / T  r) 

(80) 

The particular extremal work which describes the 
(generalized) exergy should contain the environment 
temperature as one of the boundary states. The exergy, 
the always-positive quantity at the classical limit, is 
the maximal work W .... = I ( T  i, r i, T f, "C f) with T i = T 
and T r =  T e for the engine mode, and the negative 
minimal work ( - W ) m i , = - - l ( T  i , ¢ , T  f ,z  r) with 
T ~ = T ~ and T r = T for the heat-pump mode of the 
system. For  ~ = 0 the change of the classical thermal 
exergy is recovered. 

From equation (80) with T ~ = T and T f =  T ~ one 
finds the dissipative exergy of the engine mode 

T E,. ( T, T e, "c i , z r) = c( T -  T e ) - c T e In - -  
T ~ 

(ln (T/Te))  2 
- c T C f l . _ r i _ l n ( T / T e ) .  (81) 

It may be verified that this function satisfies the Ham- 
i l ton~acobi  equation (64) with the I = E,. Otherwise, 
one obtains the exergy of the heat-pump mode for the 
function - l ( T i ,  r i, Tf, r r) with 7" = T ~ and T f =  T 

T 
E , ( T ,  T~,ri,rt) = c ( T -  T e ) - c T ~ l n  - -  

T ~ 

(ln (T/Te))  2 
+ c T ~ r r _ r , + l n ( T / T ~ ) .  (82) 

This function satisfies the Hamil ton-Jacobi  equa- 
tion (64) with I = -E,. .  Taking into account that the 
last term of the above equation contains the minimal 
integral of  the entropy production 

S,,(T, Te, ri,'r f) = c (In(T/Te))2 (83) 
r f - r  i + l n ( T / T  ¢) 

the general formula for the dissipative exergy is 

T 
E~(T, T ~, r t') = c ( T -  T e) - c T  e l n - -  

T ~ 

(rf) ' [ ln(T/Te)] 2 
+ c T  ~ 

l+__( 'c  r) I In(T,/T e) 

= E,.(T, T e, oo) + TeS, (84) 

where Ex(T, T e, oo) is the classical exergy and we have 
assumed without any losses in generality that ¢ = 0. 
In the above equations the upper sign refers to the 
heat-pump mode and the lower sign to the engine 
mode. An alternative form of the generalized exergy 
contains the height of the transfer unit  Hst: = ~.~/~ 
and the contact length S .  

E~(T  j, T ~, ~) = E , ( T  f, T ~, vo) 

Hxv ( ln (  Tr / T~) ) 2 
+ c T  e . ( 8 5 )  
- ~ + H v v l n ( r f / T  ~) 

It follows that the classical exergy yields an exact 
estimation of the extremal work for small HTU, i.e. for 
the excellent transfer conditions, or for infinitely long 
times of the energy exchange. The heat-pump mode 
exergy E~ = ( -  PC)ram, which defines the lower bound 
on the work consumption,  can be significantly higher 
than the minimal work of classical thermodynamics. 
For  state changes occurring in short times, this work 
may differ from the classical work substantially. This 
result explains the restrictive applicability of the classi- 
cal thermodynamic bounds when they are applied to 
real processes, and it shows that these bounds should 
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be replaced by stronger bounds obtained from non- 
equilibrium thermodynamics. 

10. FINAL REMARKS 

The irreversible or hysteretic properties of  our gen- 
eralized exergy as a finite-time work function are 
important.  They are associated with different values 
of  the work function obtained when the process, which 
leaves the equilibrium, is compared to the inverse pro- 
cess, which approaches the equilibrium. The first pro- 
cess corresponds with the heat-pump mode, associ- 
ated with the supply of  the work to the system, the 
second with the engine mode, characterized by the 
delivery of  the work from the system. 

While in the classical reversible thermodynamics 
these two modes can be accomplished with exactly the 
same magnitude of  work, in our dissipative theory the 
works consumed and produced in two modes running 
between the two fixed states are no longer equal. A 
significant decrease of  the maximal work received 
from the engine system and an increase of  the minimal 
work added to the heat pump system is shown in the 
high-rate regimes and for short durations of  ther- 
modynamic processes. These results show that limits 
known from the classical availability theory should be 
replaced by stronger limits obtained for finite time 
processes, which are closer to reality. 
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APPENDIX 

Alternatilge notation of HJB equation 
Frequently the subscript f is omitted in equations which 
operate with final coordinates meaning that one is allowed 
to consider arbitrary final states and times, for example 

~.r ~ +max, ~T u - L ( T , u )  = 0 (rain W i) (AI) 

which corresponds with the function V written in the form 

V(W,T,r)  = W - ® i =  ® W i 

- W W ' - I ( T  i ,T  i,~,T). (A2) 


